This course guides learners through the structured development of predictive models using Random Forest techniques in R, specifically applied to employee attrition data. The course is divided into two comprehensive modules. The first module introduces the foundational concepts of classification and Random Forest algorithms, guiding learners to explain, identify, and prepare relevant variables. Learners also perform essential preprocessing tasks to shape the dataset for analysis.

Discover new skills with 30% off courses from industry experts. Save now.


What you'll learn
Build and tune Random Forest models in R for real-world HR attrition datasets.
Apply preprocessing and variable selection for accurate employee attrition modeling.
Evaluate and validate model performance using metrics and optimization strategies.
Skills you'll gain
Details to know

Add to your LinkedIn profile
September 2025
6 assignments
See how employees at top companies are mastering in-demand skills

There are 2 modules in this course
This module introduces learners to the fundamentals of employee attrition prediction using Random Forest algorithms in R. It begins with an overview of the business problem, explores the machine learning methodology behind Random Forest, and establishes a strong conceptual framework. Learners will also examine the structure and significance of the dataset, understand variable types and transformations, and perform essential pre-modeling tasks such as data cleaning and encoding. By the end of this module, learners will be able to prepare data and understand Random Forest fundamentals essential for building predictive models.
What's included
7 videos3 assignments
This module focuses on implementing, tuning, and validating Random Forest models for employee attrition prediction. Learners will begin by developing a predictive model using cleaned and preprocessed data. They will then explore techniques to optimize model performance, including parameter tuning and validation methods. Emphasis is placed on understanding how hyperparameters influence model behavior and ensuring robust evaluation using appropriate metrics. By the end of the module, learners will be able to build, fine-tune, and validate a Random Forest model that generalizes well to unseen data.
What's included
5 videos3 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Explore more from Machine Learning
Coursera Project Network
- Status: Free Trial
LearnQuest
Coursera Project Network
Why people choose Coursera for their career





Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
More questions
Financial aid available,